La gripe: 76 años de vacuna antigripal… ¡y de la hemaglutinina!
PDF

Palabras clave

Gripe
vacuna
actualidad
futuro

Cómo citar

Navarro Alonso, J. A. (2020). La gripe: 76 años de vacuna antigripal… ¡y de la hemaglutinina!. Revista Madrileña De Salud Pública, 3(11), 1-8. https://doi.org/10.36300/remasp.2020.056

Resumen

Se revisa someramente la historia de los virus gripales y los pasos dados desde que se utilizó masivamente la primera vacuna de virus completos, hasta la descripción de las distintas vías de vehiculizar o de administrar la hemaglutinina de las que disponemos en la actualidad, en aras de mejorar la respuesta inmune y por tanto la protección clínica de toda la población.

Se exponen brevemente los requisitos que debería cumplir una futura vacuna “universal” para que pudiera ser usada con carácter sistemático y los distintos proyectos en marcha.

https://doi.org/10.36300/remasp.2020.056
PDF

Citas

Hannoun C. The evolving history of influenza viruses and influenza vaccines. Expert Rev Vaccines 2013;12(9):1085-1094. https://doi.org/10.1586/14760584.2013.824709

Barberis I, Myles P, Ault S et al. History and evolution of influenza control through vaccination: from the first monovalent vaccine to universal vaccines. J Prev Med Hyg 2016; 57(3): E115-E120.

Centers for Disease Control and Prevention [Internet]. Influenza historic timeline. [Consultado el 25 de febrero de 2020]. Disponible en: https://www.cdc.gov/flu/pandemic-resources/pandemic-timeline-1930-and-beyond.htm

Weir JP, Gruber MF. An overview of the regulation of influenza vaccines in the United States. Influenza Other Respir Viruses. 2016; 10(5):354-360. https://doi.org/10.1111/irv.12383

Kilbourne E, Smith C, Brett I et al. The total influenza vaccine failure of 1947 revisited: major intrasubtypic antigenic change can explain failure of vaccine in a post-World War II epidemic. PNAS. 2002 ;99(16):10748-10752. https://doi.org/10.1073/pnas.162366899

World Health Organization. A revision of the system of nomenclature for influenza viruses: a WHO memorandum. Bull World Health Organ 1980; 58(4):585-591.

Hampson AW. Vaccines for pandemic influenza. The history of our current vaccines, their limitations and the requirement to deal with a pandemic threat. Ann Acad Med Singapore. 2008; 37(6):722-730.

Eichelberger MC, Monto AS. Neuraminidase, the forgotten surface antigen, emerges as an influenza vaccine target for broadened protection. J Infect Dis 2019;219(S1): S75-80. https://doi.org/10.1093/infdis/jiz017

Yamayoshi S, Kawaoka. Current and future influenza vaccines. Nat Med. 2019; 25:212-220. https://doi.org/10.1038/s41591-018-0340-z

Pebody R, Whitaker H, Zhao H et al. Protection provided by influenza vaccine against influenza-related hospitalization in ≥65 year olds: early experience of introduction of a newly licensed adjuvanted vaccine in England in 2018/19. Vaccine 2020; 38(2):173-179. https://doi.org/10.1016/j.vaccine.2019.10.032

Domnich A, Arata L, Amicizia D, Puig-Barberá J, Gasparini R, Panatto D. Effectiveness of MF59-adjuvanted seasonal influenza vaccine in the elderly: a systematic review and meta-analysis. Vaccine. 2017; 35(4):513-520. https://doi.org/10.1016/j.vaccine.2016.12.011

Hung I, Yuen K. Immunogenicity, safety and tolerability of intradermal influenza vaccines. Hum Vacc Immunother. 2018; 14(3):565-570. https://doi.org/10.1080/21645515.2017.1328332

Chung J, Flannery B, Thompson M et al. Seasonal effectiveness of live attenuated and inactivated influenza vaccine in infants and young children. Pediatrics. 2016;137(2): e20153279. https://doi.org/10.1542/peds.2015-3279

Navarro Alonso JA. Efectividad de la vacuna antigripal atenuada en la infancia. En: Campins Marti M y Moraga Llop F, editores. Vacunas 2017.Madrid: Undergraf;2017.

American Academy of Pediatrics. Recommendations for prevention and control of influenza in children 2019-2020. Pediatrics. 2109;144(4): e20192478. https://doi.org/10.1542/peds.2019-2478

Pebody R, Zhao H, Whitaker H et al. Effectiveness of influenza vaccine in children in preventing influenza associated hospitalization, 2018/19, England. Vaccine. 2020; 38 (2):158-164. https://doi.org/10.1016/j.vaccine.2019.10.035

Dunkle L, Izikson R, Patriarca P et al. Efficacy of recombinant influenza vaccine in adults 50 years of age or older. N Eng J Med. 2017; 376(25):2427-2436. https://doi.org/10.1056/NEJMoa1608862

Díaz Granados C, Dunning A, Kimmel M et al. Efficacy of high dose versus standard-dose influenza vaccine in older adults. N Eng J Med. 2014; 371(7):635-645. https://doi.org/10.1056/NEJMoa1315727

Izurieta HS, Thadani N, Shay DK, et al. Comparative effectiveness of high-dose versus standard-dose influenza vaccines in US residents aged 65 years and older from 2012 to 2013 using Medicare data: a retrospective cohort analysis. Lancet Infect Dis. 2015; 15(3):293-300. https://doi.org/10.1016/S1473-3099(14)71087-4

Lu Y, Chillarige Y, Izurieta H et al. Effect of age on relative effectiveness of high-dose versus standard-dose influenza vaccines among US medicare beneficiaries aged ≥65 years. J Infect Dis. 2019; 220(9):1511-1520. https://doi.org/10.1093/infdis/jiz360

García A, Arístegui J, Moreno D et al. Documento de reflexión sobre la vacunación antigripal tetravalente. Madrid 2019. Disponible en: https://www.semg.es/images/2019/Documentos/doc_reflexion_vac_grip_trivalente_2019.pdf

Caini S, Kusznierz G, Vera Garate V et al. The epidemiological signature of influenza B virus and its B/Victoria and B/Yamagata lineages in the 21st century. PLoS ONE. 2019;14(9): e0222381. https://doi.org/10.1371/journal.pone.0222381

Gaglani M, Vasudevan A, Raiyani Ch et al. Effectiveness of trivalent and quadrivalent inactivated vaccines against influenza B in the United States, 2011-12 to 2016-17. Epub ahead of print, 2020 Feb 1. Clin Infect Dis. 2020; ciaa102. https://doi.org/10.1093/cid/ciaa102

Skowronski DM, Chambers C, De Serres G et al. Vaccine effectiveness against lineage-matched and-mismatched influenza B viruses across 8 seasons in Canada, 2010-2011 to 2017-2018. Clin Infect Dis 2019; 68(10):1754-1757. https://doi.org/10.1093/cid/ciy876

Rondy M, Kissling E, Dorthe-Emborg H et al. Interim 2017/18 influenza seasonal vaccine effectiveness: combined results from five european studies. Euro Surveill. 2018;23(9):pii=18-00086. https://doi.org/10.2807/1560-7917.ES.2018.23.9.18-00086

Pebody R, Djennad A, Ellis J et al. End of season influenza vaccine effectiveness in adults and children in the United Kingdom in 2017/18. Euro Surveill. 2019;24(31):pii=1800488. https://doi.org/10.2807/1560-7917.ES.2019.24.31.1800488

World Health Organization [Internet]. Recommended composition of influenza virus vaccine for use in the 2020-2021 northern hemisphere influenza season. [Consultado el 25 de febrero de 2020] Disponible en: https://www.who.int/influenza/vaccines/virus/recommendations/202002_recommendation.pdf?ua=1

Zost SJ, Parkhouse K, Gumina ME et al. Contemporary H3N2 influenza viruses have a glycosilation site that alters binding of antibodies elicited by egg-adapted vaccine strain. PNAS. 2017; 114(47):12578-12583. https://doi.org/10.1073/pnas.1712377114

Skowronski D, Hottes T, De Serres G et al. Influenza B/Victoria antigen induces strong recall of B/Yamagata but lower B/Victoria response in children primed with two doses of B/Yamagata. Pediatr Infect Dis J. 2011; 30(10): 833-889. https://doi.org/10.1097/INF.0b013e31822db4dc

Monto A, Petrie J. Improving influenza vaccine effectiveness: ways to begin solving the problem. Clin Infect Dis, 2019 :69(10):1824-1826. https://doi.org/10.1093/cid/ciz416

Valkenburg S, Cowling B. Turning influenza vaccinology on its head to reveal the stalk. Lancet Infect Dis 2020; 20(1):5-7. https://doi.org/10.1016/S1473-3099(19)30556-0

Erbelding E, Post D, Stemmy E et al. A universal influenza vaccine: the strategic plan for the National Institute of Allergy and Infectious Diseases. J Infect Dis. 2018; 218 (3):347-354. https://doi.org/10.1093/infdis/jiy103

Plotting a route to a universal influenza vaccine. Lancet Infect Dis. 2018; 18(5):475-476. https://doi.org/10.1016/S1473-3099(18)30235-4

Henry C, Palm AE, Krammer F, Wilson PC et al. From original antigenic sin to the universal influenza virus vaccine. Trends Immunol. 2018; 39(1):70-79. https://doi.org/10.1016/j.it.2017.08.003

De Vries R, Nieuwkoop N, van der Klis F, Koopmans MPG, Krammer F, Rimmelzwaan GF. Primary human influenza B virus infection induces cross-lineage hemnaglutinin stalk-specific antibodies mediating antibody-dependent celular citotoxicity. J Infect Dis. 2017; 217:3-11. https://doi.org/10.1093/infdis/jix546

Bernstein D, Guptill J, Naficy A et al. Immunogenicty of chimeric haemaglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. Lancet Infect Dis. 2020; 20(1) :80-91. https://doi.org/10.1016/S1473-3099(19)30393-7

Eichelberger M, Morens D, Taubenberger J. Neuraminidase as an influenza vaccine antigen: a low hanging fruit, ready to picking to improve vaccine effectiveness. Curr Op Immunol. 2018; 53:38-44. https://doi.org/10.1016/j.coi.2018.03.025

Chen Y, Wohbold T, Zheng N et al. Influenza infections in humans induce broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell. 2018;173(2):417-429. https://doi.org/10.1016/j.cell.2018.03.030

Estrada L, Schultz-Cherry S. Development of a universal influenza vaccine. J Immunol. 2019; 202 (2):392-398. https://doi.org/10.4049/jimmunol.1801054

Paules C, Fauci A. Influenza vaccines: good, but we can do better. J Infect Dis. 2019;219 (S1): S1-S4. https://doi.org/10.1093/infdis/jiy633

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.

Descargas

La descarga de datos todavía no está disponible.